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Equa tions for the correlation of viscosity of liquid binary and ternary mixtures wcre derived 
from the Eyring's theory of absolute reaction rates and from the three-molecule model of 
viscosity interactions. Another equation for the correlation of viscosity of binary mixtmes 
was derived from the same theory and from the four-molecule model. Equations for the cor
relation of viscosity of binary and ternary mixtures were further derived J rom the quasi-crystal
line model of liquids with the use of some relations of the kinetic theory of gases. The derived 
equations involve the same number of coefficients as the corresponding equations of McAllister 
or Chandramouli and Laddha and moreover are linear with respect to these coefficients. 

Contemporary theories of the liquid state are in comparison with those of the gas 
and solid states inaccurate and incomplete. Relatively imperfect knowledge of the 
structure of liquids and hence imperfect general theory of the liquid state do not 
enable to derive an exact method for detcrmining the viscosity of liquids including 
liquid mixtures. Therefore, various approximate methods were proposed, most 
of which correlate the vi scosity of liquid mixtures with the properties of pure sub
stances and with thermodynamic parameters that characterize the interactions among 
the individual components1 - S • These methods are usually based on Eyring's theo
ry9 -11, which is founded on chemical kinetics. 

The following equation, which was derived by McAllister11 from Eyring's theory 
and model concepts about the structure of a binary liquid mixture, seems to be most 
accurate: 

- In (Xl + X2Ml /Ml) + 3xfx21n [(2 + M 1/M 1)/3] + 

+ 3X1X~ In [(1 + 2M2/M 1)/3] + x~ In (Ml /Ml) ' (1) 

Where Xl> x2 , Vl' V1 , M 1, Ml denote molar fractions, kinematic viscosities, and molar 
masses of pure components 1 and 2, and Vz is the kinematic viscosity of the mixture. 
Eq. (1) contains two coefficients, v12 and V21 ' which are independent of the com-
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position but depend on the temperature and must be determined from experimental 
data for viscosities of the liquid mixture. 

According to certain authors13
-

15, Eq. (1) is valid with an average error of Jess 
than 2%, standard deviation less than 2'5%, and this even for certain binary systems 
where the hydrogen bonds undergo a change during formation of a mixture from 
pure components. 

Eq. (1) was generalized to ternary mixtures by Chandramouli and Laddha16
, 

who derived in a similar manner as McAilister12 (from Eyring's theory and model 
concepts) the following equation: 

In Vz = xi In VI + x~ In V2 + x~ In V3 + 3xix21n V12 + 

+ 3X1X~ In V21 + 3xix3 In 1'13 + 3X1X~ In V31 + 3X~X3 In V23 + 

+ 3X2X~ In V32 + 6x 1x2x 3 1n V1 23 - In (xlMl + x 2 M 2 + x 3 M 3 ) + 

+ xi In Ml + x~ In M2 + x~ In M3 + 3xix2 1n [(2Ml + M2 )!3] + 

+ 3xix3ln [(2M( + M 3 )!3] + 3x~xl1n [(2M2 + M 1)!3] + 

+ 3x~x3ln [(2M2 + M 3)!3] + 3xix 1 In [(2M3 + M 1)!3] + 
+ 3x~x2ln [(2M3 + M 2 )!3] + 6Xlx2x31n [(Ml + M2 + M 3)!3]. (2) 

Eq. (2) involves six binary coefficients vij which can be calculated from experimental 
data for the corresponding binary subsystems, and one ternary coefficient V 123 

which corresponds to the given system and depends on the temperature. 

In eleven ternary systems (the hydrogen bonds did not change), studied by Heric 
and Brewer1

?, Eq. (2) is valid with a standard deviation less than 1· 33% and maximum 
error less than 3'21 %. Mussche and Verhoeye l5 found a standard deviation of about 
1%. 

Eqs (1) arid (2) are rather complicated and thcrefore, in practice, simpler equations 
are preferred for the calculation of viscosity of liquid mixtures3 .18.19, which are, 
however, less accurate and in some cases even not applicable at all. Our aim was 
to derive for this purpose new equations which would fulfil the following conditions: 
They would be simpler than Eqs (1) and (2) and would not involve 1110r,e coefficients 
than these, they would be linear with respect to these coefficients, and they would be 
practically as accurate as Eqs (1) and (2). Their derivation is given below. 

Deriva tion of Equation Based on the Three-Molecule Model 
of Viscosity Interactions for Binary Mixtures 

According to Eyring and Frenkcl ll ,2o, the viscosities of pure components 1 and 2 
are given as 

Collection Czechoslovak Chern. Commun. [Vol. 46) (1 981) 



Viscosity of Nonelectrolyte Mixtures 331 

(3a,b) 

where k denotes Boltzmann's constant, T absolute temperature, VI and V2 volumes 
occupied by a molecule of substance 1 or 2. The relaxation times of flow, '1 and '2' 
arc given as 

'1 = (h/kT)exp(/:"gi /kT), ' 2 = (h/kT)exp(/:"gi/kT) , (4a,b) 

where h denotes Planck's constant, /:,.gi and /:"gi molecular activation free energies 
of viscous now of the components 1 and 2. Analogously, the viscosity of the liquid 
mixtureis given as 

/jz = kTTz/Vz , (5) 
where 

(6) 

The quantities /]" ,~, and /:"g; represent the properties of the mixture. 

The molecule 1 or 2 passes during its translation motion from one equilibrium 
position into another; at the same time it surmounts the energetic barrier. Simultane
ously, a moving molecule interacts with molecules 1, 2, or with some combination 
of these, according to the local concentration. For the sake of simplicity, We shall 
restrict ourselves to a simultaneous interaction of three molecules, A, B, C. Let 
a molecule B to move between A and C (for a binary mixture, A, B, and C will be 
either 1 or 2). If all three molecules are number 1, then the interaction is of the 
type 111 , i.e., it represents a pure substance 1 and corresponds to the relaxation 
time of flow '1' Similarly, the interaction 222 represents the pure substance 2 and 
corresponds to the relaxation time of flow ' 2 ' Other interactions are of a mixed 
type and are given in Table 1. If we assume that in a binary mixture with a molar 
fraction Xl the molecules of substances 1 and 2 are distributed randomly and their 
number is statistically large, ~he probability of the interaction 111 will be equal 
to xt. Similarly, we can express the probability of other interaction types, which are 
together with the relaxation times of flow given in Table I. The relaxation times 
of mixed types of interactions are defined as 

'112 = (h/kT)exp (/:,.gi12/kT) , 

T121 = (h/kT)exp (/:,.g{2dkT), 

'122 = (hjkT)exp(/:,.gidkT), 

'212 = (h/kT)exp(/:,.giu/kT), 
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where Ilg il2 etc. are molecular activation free energies of viscous flow for the cor
responding types of interactions. If we assume that the probability of the occurrence 
of a given interaction depends only on the concentration and that the relaxation time 

TABLE I 

Relaxation Times of Flow 'I" and Interaction Probabilities P 

111 
112,211 
121 
221,122 
212 
222 

Interaction type 

Three-molecular interactions, binary mixtures 

p 

XI 

2xfx2 

XfX2 

2XIX~ 
XlX~ 
X~ 

Three-molecular interactions, tcrnary mixtures .• 

III '1 
222 '2 
333 '1"3 

112,211 '112 
121 '121 
113,311 '113 
131 '131 
223,322 ' 223 

232 '232 
221,122 '122 
212 '2l2 
331, 133 'J 33 
313 T313 

332,233 '233 
323 '1"323 
213,312,123,321, 132,231 '123 

Four-molecular interactions, binary mixturcs 

1111 

2222 
1112,1211,2111,1121 
2211,2112,1212,1221, ,2121, 1122 
2212,2221,2122,1222 

x~ 
x~ 
x~ 
2xrX2 

XIx 2 

2xf x 3 
2 

XIX) 

2X!X3 

X~X3 
2XIX~ 
xlx~ 
2xIX~ 
xl x 3 
2X2X~ 
X2X~ 

6X1X2X3, 

xi 
X~ 

4X?X2 

6xfx~ 
4xIX~ 
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of flow of the mixture, 't'z> is an additive function of the relaxation times for the in
dividual interaction types, we can write 

't'z = X~'t'l + 2xix2L112 + X~XZL121 + 2X1X ~1:122 + 
+ x1xi1:212 + X~1:2 . 

On rearranging and with the simplifying assumptions 

we obtain 

(8) 

(9a,b) 

(10) 

Here 1:12 is the flow relaxation time for simultaneous interaction of two molecules 
"1" and one molecule "2"; and 't'21 vice versa. The viscosity coefficients '112 and '121 

are defined as 

On substituting Eqs (3a,b), (10), and (lla ,b) in (5) and rearranging we obtain 

'1z = XfV1'11/Vz + 317t2xixiviVz!V;)1 /3 + 

+3'121XIX~(V1 VijV})1 /3 + x~V2112/Vz' 

(lla,b) 

(12) 

Here we have introduced molar volumes v1 , V2 , Vz of components 1 and 2 and 
of their mixture. From the physical point of view, the mentioned substitution cor
responds to the formation of a fictitious binary solution by mixing the components 
1 and 2 with two hypothetical solutions in which only interactions of two molecules 
,,1" with one molecule ,,2" and of two molecules ,,2" with one molecule ,,1" take 
place, r~spectively. Therefore, it appears more adequate to replace the molar volumes 
V1 and V2 by partial molar volumes V1 and V2 ; further we shaIl use the substitution 

where ({J1 and ({J2 are volume fractions of components 1 and 2: 

rrz = Xi({Jl'11 + 3'112X1(X1X~(pi({J2)1 / 3 + 

+ 3'121X2(XtX2({Jl({JD1/3 + X~({J2'12 • 

Collection Czechoslovak Chern. Commun. [Vol. 46] [1981] 

(13a,b) 

(14) 



- - - --- - --- -- -- - - --- ----
334 Skubla: 

This is the final form of the con-elation equation. The coefficients 'hz and I1Z1 are 
characteristic for the given binary system and depend on the temperature, but not 
on the composition. They have the dimension of dynamic viscosity and their cal
culation requires the knowledge of the viscosity of the binary mixture at least for 
two compositions. 

Derivation of Equation for Viscosity of Ternary Mixtures 
from Trimolecular Model of Viscosity Interactions 

To derive an equation for the correlation of viscosity of ternary mixtures, based 
again on Eyring's theory of absolute reaction rates, we supplement the starting 
equations (3a,b) by a new one for component 3: 

(3c) 

We assume again the validity of the two-dimensional trimolecular model; for the 
ternary mixture we have A, B, C equal to 1, 2, or 3. lfthe molecules of components 
1, 2, and 3 are distributed randomly in the mixture and their number is statistically 
large, we can express the probabilities of the individual interactioris similarly to the 
preceding case. AU types of interactions with the corresponding relaxation times 
of flow and probabilities are given in Table 1. If we assume that the probability 
of a given interaction depends only on the concentration and that the relaxation 
time of flow of the mixture is an additive function of the relaxation times for the 
individual types of interactions, we can write 

'z = xfr1 + x~'z + x~r3 + 2xix 2'112 + XiX 1'121 + 

+ 2xix3'llJ + X~X3'lJl + 2X~X3'223 + X;X3'232 + 

. + 2xlx~rl22 + X1X~'212 + 2XJX;'133 + xlx~r313 + 

+ 2X2X;'Z33 + x2x~r323 + 6XIX2X3'!123 . (15) 

Further steps of the derivation are similar to the preceding case (compare ref!l 
for details). The final correlation equation is: 

I1z = Xitpl111 + X~tp21J2 + X;(P3113 + 31112Xl(XlX~tpitp2)1/3 + 

+ 31121XixixzlfJltpDll3 + 31J13Xl(XIX~(pitp3)1 /3 + 
+ 31131X3(xix3IfJltpDl /3 + 3rr23Xixzxitp~tp3y/3 + 

+ 3rr32X3(X~X3tp2tp;)113 + 611123(xix~x~tpltp2tp3)1/3 • (16) 
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The six binary coefficients flij can be calculated from measured viscosities of the cor
responding binary mixtures. They are identical with those in Eq. (14) for the cor
responding binary subsystem. Eq. (16) contains, in addition, a ternary coefficient, 
1'/123 ' which depends on the temperature, but not on the composition of the system. 

Derivation of Equation for Binary Mixtures from Four-Molecular 
Three-Dimensional Model of Viscosity Interactions 

The three-molecular model of viscosity interactions does not always appear sufficiently 
adequate. Especially if different molecules differ considerably in their size, inter
actions of more than three molecules must be considered . According to McAllister12

, 

the four-molecule model is preferable when the ratio of diameters of two molecules 
is larger than 1·5; simultaneous interactions of seven or eight molecules are possible 
in mixtures with a low concentration of the component of a larger diameter. 

Further we use the four-molecule model, since models involving interactions 
of more than four molecules lead to very complicated equations. Interactions of four 
molecules, A, B, C, and D, can be imagined in space so that one of them moves 
perpendicularly to the plane in which the remaining three molecules lie. For binary 
solutions, A, B, C, D will be numbered as 1 or 2. All types of interactions, the cor
responding relaxation times of flow and the probabilities of individual interactions 
are given in Table I. The relaxation time of flow r 1112 means the mean value of relaxa
tion times for interactions of three molecules "1" and one molecule "2"; analogously 
' 1122 is the mean value of relaxation times for interactions of two molecules "I" 
and two "2", and 1:"1222 is the mean value for interactions of one molecule "1" and 
three "2". As in the preceding cases, we assume that the relaxation time of flow of the 
mixture is an additive function of the relaxation times for the individual interaction 
types, hence 

We proceed similarly to the derivation of Eq. (14) to obtain 

flz = XifP1111 + 4'71112Xi(XIX~qJ~(P2)1/4 + 6f11122 X 1X 2(X j X 2qJ1qJ2)1/2 + 

+ 4'71222X~(xix2qJlqJnl /4 + X~fP2'72' 

This correlation equation involves three binary coefficients defined as: 
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The coefficients 111112' 111122, and 111222 depend on the temperature but not on the 
composition of the given system. They have the dimension of dynamic viscosity 
and their determination requires the knowledge of the viscosity of a binary mixture 
at least at three compositions. 

Derivation oj Equatioll jo/' Viscosity oj Bina/'y Mixtures 
j/'om Quasicrystalline Model 

Most theories oUhe liquid state assume that the liquid has a quasicrystaJline struc
ture. The arrangement of molecules around each molecule in the liquid is statistically 
equivalent, hence the probability of occurrence of a molecule in a given distance 
from another molecule is independent of their positions in the liquid. We shall 
assume that the molecules are arranged in a cubic lattice and the distance, .1, between 
their centers can be expressed as 

(20) 

The molecules vibrate around their equilibrium positions and the transfer of mo
mentum from one lattice plane to another is caused by collisions of those molecules 
which have a large amplitude, so that they reach the neighbouring plane. 

We now shall apply some relations from the kinetic theory of gases to this model. 
In the case of transfer of moment of momentum in the mixture we can write the fol
lowing equation for the distance A, : 

(21) 

where Az is the mean free path of a molecule in the mixture. Its mean velocity Uz 

can be expressed as 

(22) 

where (}z is the density of the mixture. As will be obvious fcom further text, it is 
irrelevant whether we use Eq. (22) or the equation of Chapman22

, which differs 
from the former by the constant equal to 2·004 instead of 3. 

On the assumption that only simultaneous collisions of three molecules participate 
in the transfer of momentum, we can apply the three-molecular model to the binary 
mixture (Table I); the individual types of interactions will be represented by simul
taneous collisions of three molecules. If the molecules of the types 1 and 2 are ran
domly distributed in the mixture, their number is statistically large and the colli
sion probability depends only on the concentration, and if we assume that the mean 
velocity of molecules in the mixture is an additive function of mean molecular 
velocities corresponding to the individual types of collisions, we can write 
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(23) 

where uI , U1 2 , fi2l , u2 denote mean molecular velocities in such hypothetical liquids 
where only the following simultaneous collisions take place: three molecules "1"; 
two molecules "1" and one "2"; two molecules "2" and one "1"; and three molecules 
"2". 

The mean molecular velocities in Eq. (23) are given as 

(24a,b) 

(24e,d) 

where 1J'{2 and '1'~1 are coefficients of viscosity. The mean free paths are given by the 
equations 

(2Sa,b) 

(2Se,d) 

By substituting Eqs (21), (22), (24a-d), and (25a-d) into (23) and using the equa
tions 

with 

we obtain the equation 

'1z = (MtXl + M2X2) Vz- z/3[xiIJIV;f3jMI + 311~ 2xixzCviv2)2/9 + 

+ 31J~lXIX~(VIVW/9 + X~'1zVi/3jM2]' 

where '1~2 and 1J~1 are defined as 

(26a,b) 

(2la ,b) 

(28a,b) 

(29) 

(30a,b) 

As in the derivation ofEq. (14), also in this case it is more appropriate from the physi
cal point of view to replace the molar volumes of components in Eq. (29) by partial 
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molar volumes. Thus, we obtain the final equation 

'7. = (M1XI + M 2 x 2) [X I/ \p;/3 '7I /MI + 3'7~2X I(xi / 3Xi I 3cpi/\p~/3)1 / 3 + 

+ 3'7;lxiXI/3X~/3 cpi /3 cpi/3 )1 /3 + Xi/3 cp~ / 3'7 2/M2J . (31) 

The coefficients '7~ 2 and '7;1 depend on the temperature but not on the composition. 

Derivation of Equation for Viscosity of Ternary Mixtures 
from Quasicrystalline Model 

The derivation of a correlation equation for ternary mixtures is based on the same 
model of quasicrystalline liquid structure as in the preceding case and also on the 
kinctic theory of gases. We assume that momentum is transfer;ed only in simultane
ous three-molecule collisions which can occur in different types givcn in Table 1. 
The individual ' interaction types will be in thi s case represented by simulatenous 
collisions of three molecules. On similar assumptions as in the preceding section, 
we can write for the mcan molecular velocity in a three-component mixture the 
equation 

Uz = xiu1 + X ~ U2 + xju3 + 3xix 2 u!2 + 3XIX~U 21 + 3xix'3U13 + 

(32) 

Further we proceed as in the preceding case (for details see ref. 21). The final correla
tion equation is 

'7. = (MIXI + M 2x2 + M 3x3) [x; /3cpi/3'7I/MI + xi I 3cp~ /3 '7 2/M2 + 

+ xj/3cp;/3'73/M3 + 31J'12 Xl(x ixicpicpD I/9 + 

. + 31J ~IX2(xix ~ cpicpi)1/9 + 31J~3xI(xixj(picpDI /9 + 

+ 31J;lX3(xix~cp icpj)1 19 + 3'7;3Xz(xix~cpicpnl/9 + 

+ 3'7;2X3(xix ~ cp icpj)1 /9 + 6'7~ 13 (X 1 X2 X3r/9 (CPl(P2CP3)2 /9 ] . (33) 

This equation involves six coefficients '7;j' which depend for the given system on tem
perature but not on composition. They are identical with the binary coefficients 
of Eq. (31) for the corresponding binary subsystems. The ternary coefficient '7~ 23 
in (33) also depends on temperature but not on composition. 

It is interesting to compare Eq. (12) with (29): although they were derived on the 
basis of different theories, they are similar in form . Eq. (29) differs from (12) in that 
it involves molar masses of the components and that the volume quantities in it 
are raised to a power of 2/3, their influence being thus smaller. 
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Eqs (14), (16), (18), (31), and (33) are simpler than the corresponding equations 
of the cited authors12

•
16

, although they contain the same numbers of coefficients, 
which arc moreover in a linear form. 

A comparison of the derived equations with experimental data and with the equa
tions of McAllister, Chandramouli and Laddha will form the subject of OUI' next 
work23

• 
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